skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Siliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adlayers are often placed at metal-on-organic interfaces as a common strategy to alleviate damage during metal deposition by thermal evaporation. Methods of chemically installing adlayers have been recently demonstrated on organic semiconductors that address these interfacial issues while providing many secondary benefits. Chemical installation has yet to be attempted at the cathode-electron transport layer (ETL) interface within organic light-emitting devices (OLEDs), offering a powerful option to optimize electron injection, improve surface wetting, and reduce metal penetration. Here, a reaction between TPBi (2,2′,2′’-(1,2,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) and propylene oxide results in a controllable 1–3 nm thick layer of propylene oxide as shown by high-resolution X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). The reactive addition of the adlayer at temperatures below 40℃ does not affect the morphology of the thin film and reaches a high degree of coverage within 3 h. Integration of this layer into a phosphorescent OLED does not introduce any significant negative impact on device function. This result opens up the possibility of introducing further specific functionality into the adlayer to engineer OLED performance. 
    more » « less
  2. Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices. 
    more » « less